Sequentially Cohen–Macaulay Rees algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rees Algebras of Modules

We study Rees algebras of modules within a fairly general framework. We introduce an approach through the notion of Bourbaki ideals that allow the use of deformation theory. One can talk about the (essentially unique) Bourbaki ideal I(E) of a module E which, in many situations, allows to reduce the nature of the Rees algebra of E to that of its Bourbaki ideal I(E). Properties such as Cohen–Maca...

متن کامل

Canonical modules of Rees algebras

We compute the canonical class of certain Rees algebras. Our formula generalizes that of Herzog and Vasconcelos. Its proof relies on the fact that the formation of the canonical module commutes with subintersections in important cases. As an application we treat the classical determinantal ideals and the corresponding algebras of minors. A considerable part of Wolmer Vasconcelos’ work has been ...

متن کامل

Rees Algebras of Diagonal Ideals

There is a natural epimorphism from the symmetric algebra to the Rees algebra of an ideal. When this epimorphism is an isomorphism, we say that the ideal is of linear type. Given two determinantal rings over a field, we consider the diagonal ideal, kernel of the multiplication map. We prove in many cases that the diagonal ideal is of linear type and recover the defining ideal of the Rees algebr...

متن کامل

Rees Algebras of Conormal Modules

We deal with classes of prime ideals whose associated graded ring is isomorphic to the Rees algebra of the conormal module in order to describe the divisor class group of the Rees algebra and to examine the normality of the conormal module.

متن کامل

Cohen-macaulayness of Rees Algebras of Modules

We provide the sufficient conditions for Rees algebras of modules to be Cohen-Macaulay, which has been proven in the case of Rees algebras of ideals in [11] and [4]. As it turns out the generalization from ideals to modules is not just a routine generalization, but requires a great deal of technical development. We use the technique of generic Bourbaki ideals introduced by Simis, Ulrich and Vas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2017

ISSN: 0025-5645

DOI: 10.2969/jmsj/06910293